Системная инженерия

Опубликовано: 27.09.2018

видео Системная инженерия

Машиностроение - Системная инженерия

Системная инженерия — междисциплинарный подход , определяющий полный набор технических и управленческих усилий, которые требуются для того, чтобы преобразовать совокупность потребностей и ожиданий заказчика и имеющихся ограничений в эффективные решения и поддержать эти решения в течение их жизненного цикла ( ISO 24765 ).



Системная инженерия

помогает создателям систем в выделении точек зрения , которые следует использовать системному инженеру, когда он смотрит на мир, определяет сферу деятельности (ответственности) системного инженера, предлагает инструментарий (процессы) для осуществления этой деятельности.

В составе системной инженерии выделяют две составляющих:


BIM и системная инженерия

специальное руководство (Technical leadership ), сконцентрированное на протяжении полного ЖЦ системы на продуктивных технических проектных решениях и технической целостности — искусство СИ, т.е. творческая деятельность, направленная на получение новых возможностей и систем на основе гармоничного сочетания технических знаний в определенных областях, инженерного инстинкта, умения решать задачи, креативности, способности к роли лидера и к обмену знаниями и мнениями. управление системными решениями (Systems management), сосредоточенное на решении проблем, использования множества различных технологий, участия в работе нескольких организаций, а также вовлечения сотен и тысяч людей в комплексную техническую деятельность — наука СИ, т.е. хорошо формализованная деятельность, направленная на выработку и систематизацию знаний, необходимых для строгого и эффективного управления развитием и функционированием сложных систем (эффективное управление предполагает использование систематизированного, упорядоченного, поддающегося количественному определению подхода, который может использоваться рекурсивно на разных системных уровнях, является воспроизводимым и пригодным для наблюдения и демонстрации).

СИ ничего не говорит про то, как снимать противоречия (не предлагает никаких “методов творческого мышления”, таблиц решений, способов развития воображения). Системная инженерия позволяет удерживать видение всей системы в целом при решении проблем. Системноинженерное мышление как минимум помогает поделить решение проблемы между разными людьми в инженерном коллективе.


Системная инженерия

Поколения системной инженерии

Классическая системная инженерия использует диаграммную технику — это уже не вольные поэтические метафоры, как в алхинженерии, но много более строгие определения системы: чертежи, диаграммы, таблицы и т.д. Но это не полностью формальное описание: его нельзя как-то формально проверить, оно предназначено для чтения и интерпретации только людьми. Системная инженерия на основе моделей (model-based systems engineering) предусматривает использование логических (структурных) и физических (числовых) формальных моделей, которые могут непосредственно быть обработаны (проверены, оптимизированы) компьютером. Это позволяет достигать принципиально другой сложности целевых систем: компьютеры проверяют модели на отсутствие разного рода ошибок в разы более производительно и точно, чем это может сделать человек. Основной особенностью MBSE является то, что используются не только численные физические модели, но и “логические” модели, использующие аппарат дискретной математики, плюс алгоритмические модели на языках программирования. Поискориентированная системная инженерия (search-based systems engineering). Сейчас существует только search-based software engineering (SBSE, термин появился в 2001 году) Вычисление оптимальных технических решений Цели и контракты . После описания целей и контрактов (напр. c помощью GCSL ) делается синтез и оптимизация архитектуры, соответствующей целям и контрактам (см. методологию DANSE ). искусственное воображение — новый термин, лежащий под всеми этими методами поиска решений в огромных их пространствах. Термин относительно старый, но используется всё более и более широко (см. Vicarious ). Раньше все эти "генетические алгоритмы" и "обучаемые нейронные сети" безусловно относились к тематике искусственного интеллекта . Порождающее проектирование (generative design) — ещё одно направление, где компьютер используется для непосредственного размышления над инженерным проектом, а не документирования размышлений человека-инженера (и по сопричастности generative manufacturing). Исторически тут больше идёт "воображение формы", 3D моделирование и главным образом используются 3D САПРы. Но это направление работ также связано с синтезом модели (3D модели в данном случае). Компьютерный поиск (порождение, вывод, вычисление) требований, архитектуры, тестов — это и есть следующее поколение системной инженерии, непосредственно следующее за переходом к моделеориентированности. Для этого нужно искусственное инженерное воображение (экономная генерация всё более и более подходящих вариантов инженерных решений) и искусственный инженерный вкус (умение оценить эти варианты). Во всех случаях для инженерии необходимо использовать гибридные (численные+логические) выводы/вычисления, целевая система описывается в терминах структур системы (компонент, модулей, размещений в их иерархиях) и численных параметров (физических свойств), и нужно работать не только с логическими и не только с мультифизическими моделями, но и с их гибридами. В конце концов, архитектура системы получается путём нахождения (поиска, воображения, хоть и искусственного) совмещения логической/функциональной и физической архитектур, то есть логического идеального структурного мира с грубым материальным численно описываемым физическим миром.

Основы системной инженерии

Теоретическую и методологическую основу системной инженерии составляют:

В системной инженерии тесно переплетены элементы науки и практики. Хотя её основой считают общесистемные теории, системная инженерия, однако, заимствует у них лишь самые общие исходные представления и предпосылки. Её методологический статус весьма необычен: с одной стороны, системная инженерия располагает методами и процедурами, почерпнутыми из современной науки и созданными специально для неё, что ставит её в ряд с другими прикладными направлениями современной методологии, с другой — в развитии системной инженерии отсутствует тенденция к оформлению его в строгую и законченную теорию. Это связано, прежде всего, с тем, что чрезвычайно высокая сложность и разнообразие крупномасштабных систем существенно затрудняет использование точных формализованных методов при их создании. Поэтому основные концепции, методы и технологии современной системной инженерии формировались, главным образом, в рамках практики успешных разработок. В настоящее время системная инженерия представляет собой междисциплинарный комплекс исследований, подходов и методологий к построению и эксплуатации сложных систем любого масштаба и назначения в различных областях человеческой деятельности (см.: Деятельность).

В основании метода СИ лежат:

концепции СИ — общие абстрактные представления, связанные с пониманием предмета СИ, которые направляют мышление системного инженера. принципы СИ — исходные, принимаемые за истину правила, которые используются в качестве основы для рассуждений и/или для принятия решений, предоставляют необходимые правила и нормы

Д. Хитчинс пришёл к выводу, что принципы системной инженерии напрямую связаны с концепциями системы, инженерной деятельности и управления (Hitchins D. What are the General Principles Applicable to Systems? — INCOSE INSIGHT. — V. 12, Issue 4. — December 2009. — pp. 59–64). При выделении принципов системной инженерии он ориентировался на системные концепции, типичные для инженерно-технических и социотехнических систем.

Базовые принципы системной инженерии по Д. Хитчинсу:

Системный подход (The Systems Approach) — целевая система рассматривается как открытая и в контексте её взаимодействия и приспособления к другим системам, находящимся в среде функционирования, как имеющая в своём составе открытые, взаимодействующие между собой подсистемы и как представляющая собой часть системы в более широком смысле или объемлющей системы. Синтез (Synthesis) — для получения решения части или подсистемы соединяются между собой, чтобы функционировать и взаимодействовать как единое целое, демонстрируя повышение эффективности работы в результате соединения, интеграции, слияния отдельных частей в единую систему (синергический эффект). При этом основная задача системной инженерии состоит в выборе (описании, проектировании, селекции) «правильных» составных частей, их соединении между собой так, чтобы достигалось необходимое взаимодействие и в правильном сочетании этих взаимодействий таким образом, чтобы достигались необходимые свойства целого. Холизм (Holism) — при принятии решений проблема, её решение и система рассматриваются в целом. Органицизм (Organicism) — свойства и поведение систем рассматриваются в динамике, причём в основе деятельности системного инженера лежат скорее представления о развитии биологического организма, нежели механистическая метафора классического инженерного подхода.

Дополнительные принципы системной инженерии по Д. Хитчинсу:

Адаптивная оптимизация (Adaptive Optimizing) — проблемы следует решать постепенно во времени, то есть так, чтобы адаптировать характеристики сложной системы к новым ситуациям и изменениям, происходящим в состоянии системы, во внешней среде и в других системах, взаимодействующих с целевой, а также учесть возникающие дополнительные факторы. Наиболее важный аспект адаптивной оптимизации — обеспечение возможности непрерывного улучшения характеристик системы для сохранения оптимальной эффективности в условиях изменений в среде функционирования. Постепенное уменьшение энтропии (Progressive Entropy Reduction) — процесс системной инженерии продолжается на протяжении всего жизненного цикла системы, в результате чего энтропия, характеризующая целевую систему, постепенно уменьшается с переходом от состояния беспорядка (высокая энтропия) к состоянию порядка (низкая энтропия) в конце цикла. Разумная достаточность (Adaptive Satisfying) — успешная системная инженерия включает процесс непрерывной адаптации требований к системе и решений для получения результатов, которые в данных условиях позволяют в наибольшей степени удовлетворить критически важные заинтересованные стороны. Это включает две составляющих: система успешна тогда и только тогда, когда с её помощью добиваются успеха все ключевые заинтересованные стороны; для того, чтобы система позволяла ключевым заинтересованным сторонам добиться успеха требуется: идентифицировать все критически важные заинтересованных сторон; определить, в чём видят успех заинтересованные стороны; договориться с заинтересованными сторонами о взаимовыгодном наборе планов создания и производства системы, а также реализации процессов; контролировать, с учётом баланса интересов заинтересованных сторон, реализацию планов, включая адаптацию к происходящим изменениям.

Метод СИ является руководством и практическим инструментом для достижения цели, т.е. для создания успешной системы, а также для достижения состояния стабильного, устойчивого развития посредством принятия непротиворечивых решений на протяжении ЖЦ системы.

Процесс системной инженерии

Основная статья: Процесс системной инженерии

Опыт множества системных разработок показывает, что несмотря на отличия в целевых системах, совокупность действий, повторяющихся по мере прохождения стадий и этапов жизненного цикла в своей основе остаётся постоянной. Поэтому на практике системная инженерия стремится формализовать процесс разработки систем. Совокупность подобных типовых, повторяющихся действий получила особое название — процесс системной инженерии (Systems Engineering Process) или метод системной инженерии (Systems Engineering Method).

Предмет системной инженерии

В соответствии с современными представлениями, предметом системной инженерии является интегрированное, целостное рассмотрение крупномасштабных, комплексных, высокотехнологичных систем, взаимодействующих преимущественно на уровне предприятий с использованием человеко-машинных интерфейсов. Создание таких систем требует усиленного внимания к следующим процедурам:

разработке архитектуры систем, проектированию систем и их элементов; системному анализу и исследованию операций; управлению инженерной деятельностью; выбору технологий и методик; эффективному управлению жизненным циклом системы.

Профиль современной системной инженерии включает следующие основные области деятельности:

Управление организацией (организационно-управленческая деятельность). Управление проектами (проектно-управленческая деятельность). Управление инженерными решениями (проектно-инженерная деятельность). Специальные инженерные дисциплины (технологическая деятельность).

Стандарты в области системной инженерии

См. Стандарты системной инженерии

Литература

Harry H. Good, Robert E. Machol "System engineering : an introduction to the design of large-scale systems", 1957. Arthur D. Hall "A Methodology for Systems Engineering", 1965. Гуденко М. "Большие системы. Теория, методология, моделирование", 1971. Blanchard B., Fabrycky W. "Systems Engineering and Analysis", 1981. Brill J. "Systems Engineering – A Retrospective View", 1998. Rhodes D., Hastings D. The Case for Evolving Systems Engineering as a Field within Engineering Systems", 2004. Батоврин В.К. "Системная и программная инженерия. Словарь-справочник : Учебное пособие для вузов", 2010. Alexander Kossiakoff et al. "Systems Engineering : Principles and Practice 2nd Edition", 2011. Левенчук А.И. "Системно-инженерное мышление. Учебник", 2015. Левенчук А.И. "Системное мышление", 2018.

См. также

rss